(a) States of matter

1:01 understand the three states of matter in terms of the arrangement, movement and energy of the particles

Solid

Arrangement: Particles are close together and regularly packed.

Movement: Particles vibrate around a fixed point.

Energy: Particles have less kinetic energy than both liquids and gasses.

Liquid

Arrangement: Particles are close together but irregular.

Movement: Particles are free to move.

Energy: Particles have less kinetic energy than gasses but more than solids.

Gas

Arrangement: Particles are far apart and there are no forces between them.

Movement: Particles are free to move.

Energy: Particles have more kinetic energy than liquids and solids.

 

1:02 understand the interconversions between the three states of matter in terms of: the names of the interconversions, how they are achieved and the changes in arrangement, movement and energy of the particles

Melting: When a solid is heated, the energy makes the particles vibrate fast enough so that the forces of attraction between the particles break. For example   H2O(s) –> H2O(l)

Freezing: When a liquid is cooled, the particles move slow enough so that the forces of attraction between them will hold them into a solid. For example   H2O(l) –> H2O(s)

Boiling: When a liquid is heated strongly, the energy makes the particles move fast enough so that all forces of attraction are broken. For example   H2O(l) –> H2O(g)

Condensing: When a gas is cooled, the particles move slow enough so that the forces of attraction between them will hold them as a liquid. For example   H2O(g) –> H2O(l)

Sublimation: A small number of substances have the ability to change directly from a solid to a gas when heated. For example   CO2(s) –> CO2(g)

1:03 understand how the results of experiments involving the dilution of coloured solutions and diffusion of gases can be explained

Diffusion is the spreading out of particles in a gas or liquid. There is a net movement of particles from areas of high concentration to areas of low concentration until a uniform concentration is achieved.

 

i) dilution of coloured solutions

Dissolving potassium manganate(VII) in water demonstrates that the diffusion in liquids is very slow because there are only small gaps between the liquid particles into which other particles diffuse.

The random motion of particles cause the purple colour to eventually be evenly spread out throughout the water.

Adding more water to the solution causes the potassium manganate(VII) particles to spread out further apart therefore the solutions becomes less purple. This is called dilution.

 

ii) diffusion experiments

When ammonia gas and hydrogen chloride gas mix, they react together to form a white solid called ammonium chloride.

ammonia                  +              hydrogen chloride                 –>            ammonium chloride

NH3(g)                     +              HCl(g)                                     –>            NH4Cl(s)

A cotton wool pad was soaked in ammonia solution and another was soaked in hydrogen chloride solution. The two pads were then put into opposite ends of a dry glass tube at the same time.

The white ring of ammonium chloride forms closer to the hydrochloric acid end because ammonia particles are lighter than hydrogen chloride particles and therefore travel faster.

Even though these particles travel at several hundred metres per second, it takes about 5 min for the ring to form. This is because the particles move in random directions and will collide with air particles in the tube.

1:04 know what is meant by the terms: solvent, solute, solution, saturated solution

When a solid dissolves in a liquid:

  • the substance that dissolves is called the solute
  • the liquid in which it dissolves is called the solvent
  • the liquid formed is a solution
  • a saturated solution is a solution into which no more solute can be dissolved

 

1:05 (Triple only) know what is meant by the term solubility in the units g per 100g of solvent

Solubility is defined in terms of the maximum mass of a solute that dissolves in 100g of solvent. The mass depends on the temperature.

For example, the solubility of sodium chloride (NaCl) in water at 25⁰C is about 36g per 100g of water.

1:06 (Triple only) understand how to plot and interpret solubility curves

The solubility of solids changes as temperature changes. This can be plotted on a solubility curve.

Image result for solubility curve

The salts shown on this graph are typical: the solubility increases as temperature increases.

For example, the graph above shows that in 100g of water at 50⁰C the maximum mass of potassium nitrate (KNO₃) which will dissolve is 80g.

However, if the temperature were 80⁰C a mass of 160g of potassium nitrate (KNO₃) would dissolve in 100g of water.

1:07 (Triple only) practical: investigate the solubility of a solid in water at a specific temperature

At a chosen temperature (e.g. 40⁰C) a saturated solution is created of potassium nitrate (KNO₃) for example.

Some of this solution (not any residual solid) is poured off and weighed. The water is then evaporated from this solution to leave a residue of potassium nitrate which is then weighed.

The difference between the two measured masses is the mass of evaporated water.

The solubility, in grams per 100g of water, is equal to 100 times the mass of potassium nitrate residue divided by the mass of evaporated water.

 solubility (g/100g) = \frac{mass Of Solute}{mass Of Solvent} \times 100

Select a set of flashcards to study:

     Terminology

     Skills and equipment

     Remove Flashcards

Section 1: Principles of chemistry

      a) States of matter

      b) Atoms

      c) Atomic structure

     d) Relative formula masses and molar volumes of gases

     e) Chemical formulae and chemical equations

     f) Ionic compounds

     g) Covalent substances

     h) Metallic crystals

     i) Electrolysis

 Section 2: Chemistry of the elements

     a) The Periodic Table

     b) Group 1 elements: lithium, sodium and potassium

     c) Group 7 elements: chlorine, bromine and iodine

     d) Oxygen and oxides

     e) Hydrogen and water

     f) Reactivity series

     g) Tests for ions and gases

Section 3: Organic chemistry

     a) Introduction

     b) Alkanes

     c) Alkenes

     d) Ethanol

Section 4: Physical chemistry

     a) Acids, alkalis and salts

     b) Energetics

     c) Rates of reaction

     d) Equilibria

Section 5: Chemistry in industry

     a) Extraction and uses of metals

     b) Crude oil

     c) Synthetic polymers

     d) The industrial manufacture of chemicals

Go to Top