(e) Extraction and uses of metals

2:22 (Triple only) know that most metals are extracted from ores found in the Earth’s crust and that unreactive metals are often found as the uncombined element

Most metals are found in the Earth’s crust combined with other elements. Such compounds are found in rocks called ore, rocks from which it is worthwhile to extract a metal.

A few very unreactive metals, such as gold, are found native which means they are found in the Earth’s crust as the uncombined element.

 

2:23 (Triple only) explain how the method of extraction of a metal is related to its position in the reactivity series, illustrated by carbon extraction for iron and electrolysis for aluminium

Extraction of a metal from its ore typically involves removing oxygen from metal oxides.

 

If the ore contains a metal which is below carbon in the reactivity series then the metal is extracted by reaction with carbon in a displacement reaction.

 

If the ore contains a metal which is above carbon in the reactivity series then electrolysis (or reaction with a more reactive metal) is used to extract the metal.

2:24 (Triple only) be able to comment on a metal extraction process, given appropriate information

Extraction of a metal from its ore typically involves removing oxygen from metal oxides.

 

If the ore contains a metal which is below carbon in the reactivity series then the metal is extracted by reaction with carbon in a displacement reaction.

 

If the ore contains a metal which is above carbon in the reactivity series then electrolysis (or reaction with a more reactive metal) is used to extract the metal.

2:25 (Triple only) explain the uses of aluminium, copper, iron and steel in terms of their properties the types of steel will be limited to low-carbon (mild), high-carbon and stainless

Aluminium
UseProperty
Aircrafts and cansLow density / resists corrosion
Power cablesConducts electricity / ductile
Pots and pansLow density / strong (when alloyed) / good conductor of electricity and heat

Aluminium resists corrosion because it has a very thin, but very strong, layer of aluminium oxide on the surface.

Copper
UseProperty
Electrical wiresvery good conductor of electricity and ductile
Pots and pansvery good conductor of heat / very unreactive / malleable
Water pipesunreactive / malleable
Surfaces in hospitalsantimicrobial properties / malleable
Iron
UseProperty
BuildingsStrong
SaucepansConducts heat / high melting point / malleable
Steel
Type of steelIron mixed withSome uses
Mild steelup to 0.25% carbonnails, car bodies, ship building, girders
High-carbon steel0.6%-1.2% carboncutting tools, masonry nails
Stainless steelChromium (and nickel)cutlery, cooking utensils, kitchen sinks

Mild steel is a strong material that can easily be hammered into various shapes (malleable). It rusts easily.

High-carbon steel is harder than mild steel but more brittle (not as malleable).

Stainless steel forms a strong, protective oxide layer so is very resistant to corrosion.

2:26 (Triple only) know that an alloy is a mixture of a metal and one or more elements, usually other metals or carbon

An alloy is a mixture  of a metal with, usually, other metals or carbon.

For example, brass is a alloy of copper and zinc, and steel is an alloy of iron and carbon.

2:27 (Triple only) explain why alloys are harder than pure metals

Alloys are harder than the individual pure metals from which they are made.

In an alloy, the different elements have slightly different sized atoms. This breaks up the regular lattice arrangement and makes it more difficult for layers of ions to slide over each other.

 

Select a set of flashcards to study:

     Terminology

     Skills and equipment

     Remove Flashcards

Section 1: Principles of chemistry

      a) States of matter

      b) Atoms

      c) Atomic structure

     d) Relative formula masses and molar volumes of gases

     e) Chemical formulae and chemical equations

     f) Ionic compounds

     g) Covalent substances

     h) Metallic crystals

     i) Electrolysis

 Section 2: Chemistry of the elements

     a) The Periodic Table

     b) Group 1 elements: lithium, sodium and potassium

     c) Group 7 elements: chlorine, bromine and iodine

     d) Oxygen and oxides

     e) Hydrogen and water

     f) Reactivity series

     g) Tests for ions and gases

Section 3: Organic chemistry

     a) Introduction

     b) Alkanes

     c) Alkenes

     d) Ethanol

Section 4: Physical chemistry

     a) Acids, alkalis and salts

     b) Energetics

     c) Rates of reaction

     d) Equilibria

Section 5: Chemistry in industry

     a) Extraction and uses of metals

     b) Crude oil

     c) Synthetic polymers

     d) The industrial manufacture of chemicals

Go to Top